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Absiract

Internal spur gear teeth are nomally
stronger than pinion teeth of the same pitch
and face width since external teeth are
smaller at the base. However, ring gears
which are narrower, have an unequal
addendum or are made of a material with a
lower strength than that of the meshing pinion
may be loaded more critically in bending. In
this study, a model for the bending strength of
an internal gear tooth as a function of the
applied load pressure angle is presented
which is based on the inscribed Lewis constant
strength parabolic beam. The bending model
includes a siress concentration factor and an
axial compression term which are extensions of
the model for an external gear tooth. The
geometry of the Lewis factor determination is
presented, the iteration to determine the
factor is described and the bending strength J
factor is compared to that of an external gear
tooth. This strength model will assist optimal
design efforts for unequal addendum gears
and gears of mixed materials.
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face width {mm,in)

height of Lewis parabola {mm,in)
height, y distance (mm.in) or stress
concentration constant

AGMA bending strength factor

stress concentration factor

module {mm)

number of teeth

diametral pitch (1.0/inch)

pitch radius {mm,in)

radial distance to the parabola apex
{mm,in})

cutter tip radius ([mm,in})

radius to trochoid point (mm.in)

cutter radius to center of cutter tip
{mm,in)

gear radius to the center of the cutter tip
fillet {[mm.in)

distance from the cutting pitch point to
the cut point (mm,in)

distance from the cutling pitch point to
the center of the cutter tip fillet (mm,in)
Lewis parabola tooth thickness ([mm.in)
pitch circle tooth thickness (mm.in)
tangential load (kN., |bs)

Lewis form factor distance (mm,in)
abscissa coordinate (mm,in)

ordinate coordinate {mm,in) or Lewis form
factor

angle between the tangent to the
frochoid and the tooth centerline
(radians)

central gear angle (radians)



y angle on the gear from the cutting pitch
point to the frochoid cutting point
(radians)

5, angle on the cutter from the pitch point
on the tooth surface to the center of the
tip circle {radians)

5, angle on the gear from the pitch point on
the tooth surface to the center of the tip
circle {radians)

A intemnal tooth half bottom land angle
[radians) -

n angle at the cutting point between the
line of centers and the normal through the
tip fillet center {radians)

8 roll angle (radians)

8, central angle on the gear from the center
of the tip of the frochoid to the trochoid
point {radians)

8,, central angle on the gear from the center

of the gear tooth to the tfrochoid point

{radians)

supplement of the angle a (radians)

radius of curvature (mm,in)

bending stress (Pa, psi)

pressure angle {radians)

slope of the frochoid at the contact point
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Subscripts

point of contact
base circle
apex of parabola
involute point
. fillet
frochoid point
of the involute at the cutter tip fillet center
cutter
internal gear

N ~=N=T "M OUT >

Syperscripts

L siress conceniration equation constant
M siress conceniration equation constant

In i

In the design of spur gear teeth, bending
sirength is a significant concemn'®’. Gear
teeth which break off at the root become free
debris in a gear box fo cause secondary
failures. In a very short time, a tooth bending
fatigue failure will cause a complete
breakdown of the fransmission in which it
occurs. So tooth bending fatigue limits in a
fransmission are a primary concern in all stages
of design.

For equal addenda gears made of the
same material and the same width, the pinion
teeth have the lowest bending fatigue limit
since their bases are smaller and the loads on
the pinion and gear teeth are equal. Thus
most of the gear tooth bending siress models
are for external gear teeth*®. However, there
are sitfuations in which an intemal gear tooth
may have a higher chance of failure than its
meshing external pinion tooth. It may be
made of a weaker material or its tooth
thickness may be reduced to enlarge the
pinion’s tooth thickness and balance the
bending sirengths in the mesh.

Present models for the bending strength
of internal gear teeth®’ use the straight line
tangent model of Hofer with a slope relative to
the tooth centerline of forty-two to fifty-nine
degrees. Both studies recommend forty-five
degrees for thick rimmed gears with larger
angles for thin rimmed gears. The AGMA
Aerospace Gearing Design Guideline Annex’,
gives a procedure for finding the inscribed
parabola which yields the highest stress
estimate for a given tooth and loading. This
procedure assumes a solid body gearand a
circular fillet tangent to the tooth involute.

in this work, the classic method of
inscribing a constant strength parabola inside
the tooth is used to estimate the tooth
strength’. This is the method of Wilfred Lewis™
which has been used for many years by the
AGMA as the basis of the external gear tooth
strength model®. A siress concentration factor
has been added to the calculation as an
extension of the Dolan and Broghamer



factor''. The mode! also includes axial
compression to match the AGMA bending
strength J factor®. Required information to
specify the intemal gear J factor are: 1) the
dedendum ratio of the tooth, 2} the nominal
pressure angle, 3) the pitch circle footh
thickness, 4) the number of teeth on the
intemal gear, 5) the number of teeth on the
meshing pinion to find the highest point of
single tooth loading, 6) the number of teeth on
the pinion shaper cutter, and 7) the tip radius
of the cutter.

Tooth Strength Model

wilired Lewis developed the basic model
for bending stress in gear teeth in 1892, In his
analysis, Lewis considered a gear tooth tobe a
loaded cantilever beam with a force applied
to the tip of the gear. He made the following
assumptions:

1. the load is applied to the tip of a gear
tooth;

2. only the tangential component of the
force will be a factor {the radial
component is neglected);

3. the load is distributed uniformly across the
entire face width of the gear;

4. forces due to tooth sliding friction are
negligible; and

5. no siress conceniration is present in the
tooth fillet.

Lewis took into account the geometry of the
gear tooth by inscribing a constant strength
parabola within the tooth form. The vertex of
the parabola is located at the intersection of
the tooth centerline and the applied load's
line of action. At the location on the profile of
the tooth where the inscribed parabola is
tangent, the Lewis equation for the tooth
bending stress is expressed as:

W, -P
0:__1___d_ (])

f-y

where W, is the tangential load on the tooth,
P . is the diamefral pitch, f is the gear face
width, and Y is the Lewis form factor based on
the geometry of the tooth. The point of
application of the load is described by the

pressure angle of the applied load at the
tooth surface, ¢ A

For the stress analysis of internal gears,
both involute and frochoid geometry are used
in checking for the smallest inscribed parabola
in the tooth.

Involute Geometry

The involute is the locus of a pointon a
line urrolling from its base circle. The involute
profile is described in terms of a coordinate
frame with its center at the gear center and
the y axis through the center of the tooth. The
coordinates of the profile are obtained as
projections of the base radius, Rb , and the
radius of curvature, p_, of the invo%ute point
onto this x,y coordina%e frame.

The involute function of a pressure angle,
¢. depicted in Figure 1, is the difference
between the roll angle and the pressure angle
at that point. Mathematically, the involute of
an angle is expressed as:

INV(¢) = 8-9 = tan(d) - o (2)
The pitch radius of the internal gear is
expressed by the equation:
N
R2 =_ 2 (3)
2-P d
or
m
R, =N, -— (4)
2 2 2

for meitric units, where N, is the number of
internal gear teeth, P is%he diametral pitch
and m s the module.dThe base radius is:

Rb2 = R2 - cos(d) (S)
Delta, A, is one haif of the bottom land angle
of the tooth involute. In Figure 1, A can be
seen as the angle from the center of the tooth
to the involute at the base circle, which is:



— -~ INV(9) (6)
2- R2
where t_ is the tooth thickness at the pitch
circle.

As shown in Figure 2, the radius to the
loaded line of action at the centerline of the
loaded tooth is R .. This is also the radial
distance to the parabola apex. The pressure
angle at R . is equal o the sum of the tangent
of ¢ ,, the pressure angle at the tooth surface,
cnﬁ. So RC can be expressed as:

R R
R =_ b2 _ b2 )

c cos(cbc) cos{tan(¢ A) + 4)

in Figure 3, O is the roll angle to the point
on the involute which is tangent to the
inscribed parabola with its apex at R ... Since
we must iterate to find 8, an initial esfl:mc're for
8 can be expressed as:

6 = 1.5-tanip,) (8)

X. and Y_ are the coordinates of the involute
point which is cut at the roll angle 8. These
coordinates are measured with respect to the
center of the loaded tooth. From the
geometry of Figure 3, X_ and Y_ are:

E E
XE = P cos{A +6) - sz -sin(A + 6) [9)
YE = pE-sin(A+ 8) + Rb2 - cos(A+6) (10)

In Figure 3, H, is the y distance from the
tangent point on *he involute to the
intersection of the involute's tangent with the
tooth centerline.

X
H N S (1)

tan(A + 6)

H., is the distance from that same point on the
parabola to the intersection of the parabola's

tangent with the tooth centeriine. Since the y
distance to the apex of a parabola is one half
the distance tfo the intersection of the tangent
with the centerline, H2 can be expressed as:

H2 =2- (YE-RC)

An interval halving iterative process is
used to find the location on the tooth surface
at which the largest parabola is tangent to the
involute. 8, X 'YE' H], and H,, are calculated
each time in Fhis process. Thé angle 8 is
increased by a fixed step, A8, in each iteration,
with AB set to 0.01 radians initially. When the
difference in H, and H, changes sign, AB is set
to -A8/2 to close in on the solution. When the
values of H] and H,, are equal, the location on
the tooth surface at which the largest
parabola is tangent to the involute has been
determined.

(12)

Trochoid Geomeiry

For an internal tooth, the largest inscribed
parabola may be tangent to the involute or it
may be tangent to the frochoid at the base of
the tooth. Therefore, frochoid geometry is aiso
used to find the point of maximum siress. In
the following analysis, the cutter is gear 1 and
the internal gear is gear 2 with R] being the
pitch radius of the cutter and R, being the

. " . 2
pitch radius of the internal gear”

As shown in Figure 4, R _ is the cutter
radius to the center of the cutter tip fillet:

Ro= R]+B-RF (13)
where B is the dedendum of the internal gear
and R_ is the cutter tip radius. The pressure
angle on the cutter to the involute of the
cutter tip fillet center is denoted by d)Z and is:

R

b1 ) (14)

Ro

¢, = cos’! (

The radius of curvature of the involute at the
cutter tip fillet center is p., which can be
determined from R o on& ¢Z by:



Py = Ry " sin(d,) (15)

8, is the angle on the cutter from the
pitch point on the tooth surface to the center
of the cutter tip fillet and 3, is the conjugate
rotation of the gear from the pitch point on the
tooth surface to the center of the cutter tip
filet on the cutting frochoid. The angles 6]
and 62 can be calculated as:

Py *+Re
5] = —_— ¢Z - INV(d) {16)
Rp1
R
5, =3, — (17)
2

Figure 5 shows the paths of the frochoids
on the internal gear tooth and also displays
the locations of point C on the frochoid of the
tip center and its comresponding pitch point, D.
The inner frochoid is for the point at the center
of the cutter tip fillet. The outer frochoid is for
the envelope of the cutter tip positions which
is the cut shape on the toothroot. The line
O,.C, locates the tooth centerline in these
figures.

In Figure 5, 8, is the rotation of the cutter
and 6, is the corresponding rotation of the
gear. ‘While the cutter rotates the center of
the tip fillet from point F to point C, the gear
rotates the apex of the frochoid, whichis a
fillet radius above point F, to point G. The line
O,G then is the centerline of the frochoid on
the gear. The angular rotation of the gear can
by expressed in terms of the rotation of the
cutter as:

— (18)

R. is the radius from the gear center to the
center of the cutter tip fillet. From triangle ABC
in Figure 6 and the law of cosines, R.r canbe
defined as:

2 2

R, = [2+R_Z+2CR -cos(61)]”2 (19)

o
where c is the gear to cutter center distance
whichisequalto R, minusR.. Theangle B is
the cenfral angle on the gear from the cutting
pitch point, D, to the center of the cutter tip
fillet. in Figure 6, the perpendicuiar distance
from point C to the gear-to-cutter line of
centers is:

RI. -sin{B) = Ro . sin(G]) (20)

therefore,
]( Ro-sin(el) )

RT

RD is the distance from the cutting pitch point
to the center of the cutter tip fillet. Applying
the law of cosines to triangle ADC, yields:

B = sin (21)

D= [R22+ RT2-2-R2-R.].-cos(B)]]/2 (22}

The angle at the cutling pitch point between
the line of centers and the cutting normal
through the tip fillet center, g, is found from the
law of cosines in friangle ADC:

2 2 2
R,”+RD -
n= cos V[ —2 5 ) (23)

2-R2-RD

R.. is the radius from the gear center to the
actual trochoid point:

5 2. 0a2 ob DA Y
RFF = [R2 +RA" -2 R2 RA-cos(n)] '2 (24)
where RA equals RD plus R_.. Gamma, v, is the

angle on the gear from the cutting pitch point

to the trochoid cutting point:
Ly Rp2H R -RAZ
Y = cos ( (25)
2Ry Rer

An expression for 8., the central angle on the
gear from the cenfer of the tip of the trochoid
to the trochoid point, is:

6. =vy-6

¢ (26)

2



In Figure 4, 8., is the cenfral angle on the gear
from the center of the gear tooth to the
frochoid point. It can be expressed as the arc
from the tooth centerline to the pitch point on
the involute plus the arc from the pitch point
to the center of the tip trochoid minus the arc
o the frochoid point:

P_+5.-0 (27)

The coordinates of the fillet developed on
the intemal gear are XF and YF:

XF = RFF . sin(eft) {(28)
and

YF = RFF . cos(eff) (29)

Psi, i, is the slope of the frochoid at the
contact point measured relative to a line
perpendicular to the centerline of the tooth.
The frochoid surface is normal to the line DE in
Figure 5 since D is the instant center for the
relative motion of the cutlter with respect to
the gear. In Figure 7, the angle at E between
the tangent to the frochoid and the radial line
to O, is n/2 - (n-y-n) or y+n-ni/2. This makes the
angl% between the tangent to the frochoid
and the tooth centerline:

a =mn-8q-{y+n-n/2) {30)

a 3n/2-9ﬂ—v-n (31)

its supplement is
A=n-a=8ﬁ+y+n-n/2 {32)

This angle is the complement of y, therefore:

w =n/2-(n/2+ eﬂ +y+n) (33)

=mn-n-v-8 (34)

€
i

ft

In Figure 7, H. is the radial distance on the
tooth centerline from the point of interest to
where the frochoid tangent crosses the center
of the tooth:

H] = XF - tan{y) (35)
H,, is defined as the radial distance on the
tooth centerline from the point of interest to
where the parabola tangent crosses the
center of the tooth. Since one-half H2 equals
YF minus RC:

H2 =2 [YF—RC) (36)

A similar interval halving iterative process
is used to find the location of the fillet
developed on the internal gear which is
tangent to a point on the inscribed parabola.
When the values of H, and H,, are equadi, the
location of the tangent poinfon the internal
gear is determined.

The results obtained from the involute and
frochoid geomefries are then compared. The
smaller x coordinate identifies the weaker
inscribed parabola for the internal tooth. This x
coordinate and its comresponding y coordinate
are used to caiculate the Lewis form factor,
and the AGMA bending strength J factor
which includes a stress concentration factor
and a term for axial compression in the tooth.

Bending Strenath Factor

The Lewis form factor, Y, originally defined
for external teeth, is:

2
Y=—P_ X (37)
3 d
where
XE2 fc2
X = = (38)
RC'YE 4-(RC-YE}

One of the most important factors which
Lewis overlooked in his analysis was the effect
of siress concentrations. Large localized



stresses occur in the fillets of gear teeth due to
the sudden change in the cross-section of the
tooth. By examining these factors and
determining their exact effect on the bending
stress in a gear tooth, Lewis' work was
extended.

In 1940, professors T.J. Dolan and E.L.
Broghamer of the University of lllinois used the
photoelastic method of siress analysis to do
this''. They examined various types of gear
teeth and determined the location and the
magnitude of the maximum siresses which
occur in the tooth fillets. Their research
showed that the maximum stress is located
closer to the root circle than Lewis had
predicted. However, the distance between
Lewis' location and Dolan's and Broghamer's
location of the maximum stress is relatively
small. Thus, the use of Lewis' model to
determine the bending stress location in gear
teeth was confirmed by Dolan and
Broghamer. They dlso determined that the
primary factors affecting the stress
concentration at the tooth fillet are the fillet
radius, the tooth thickness, the height of the
load position on the tooth, and the tooth
pressure angle. They developed the following
siress concentration factor curve fit relation®'":

Ke = H + (—)L(—)M (39)

where, t_is the tooth thickness at the critical
section, p, is the minimum radius of curvature
of the fille‘ curve, and h is the height of the
Lewis parabola.

From a curve fit of the experimental data
of Dolan and Broghamer, AGMA® gives the
following vaiues for the constants H, L, and M
in terms of the pitch circle pressure angle, ¢:

H = 0.331-0.4369 (40)
L = 0.324-0.492-¢ {41)
M = 0.261 + 0.545¢ (42)

The modified Lewis model for determining the
bending stress in gear teeth, which includes
this stress concentration factor and a term for
the axial compression in the tooth from the
radial component of the tooth load, is:

W,-P
o= t' d (43)
f-J
where the AGMA J factor, in terms of ¢ _, the
pressure angle at the apex of the parabola on
the tooth centerline, is:
1
J= (44)
’ cos((bc) 6-h ) 1cn(d)c) )
f 2
cos(d) fc 1(:

Since the bending strength factoris a
function of the tooth shape, it is dependent on
the number of teeth on the gear. This is shown
in Figure 8, which is a plot of the J factor versus
the number of gear teeth for both an external
gear and for an internal gear. As the number
of external gear teeth increases, the Lewis
form factor increases at a decreasing rate;
while as the number of internai gear teeth
increases, the Lewis form factor decreases at a
decreasing rate. Since the tooth shape on the
two gears approach each other as the
number of teeth increase, the form factor
values for the internal and external gears
approach each other as weli.

Conclusions

An estimate for the bending strength of
an internal spur gear tooth has been
developed. This model uses the inscribed
parabola approach of Wilfred Lewis in
combination with an exitrapolation of the
Dolan and Broghamer siress concentration
factor and the addition of an axial
compression term.

The estimate is obtained considering both
the involute surface of the tooth and the
trochoid fillet at the base of the tooth as
produced by a pinion shaper cutter.



produced by a pinion shaper cutter.
Generation equations are derived for both the
involute and the frochoid. Due to the general
nature of the model, the bending strength
prediction is valid for a load applied at any
point on the tooth. The load location is
identified by the tooth surface pressure angle
at the point of application of the load.

A direct and stable iteration procedure is
used to determine the size of the largest
inscribed parabola in the intemal gear tooth.
Based on the size of this parabolaq, the Lewis
form factor is established.

To complement the base siress estimate,
a stress concentiration factor and an axial
compression component are added to the
strength model. This siress concentration
factor is an extrapolation of the Dolan and
Broghamer factor and is consistent with the
AGMA J factor for external gears. A
comparison of the bending strength model for
an external gear and for an intermnal gear is
given for gears of increasing size meshing with
a twenty-five tooth pinion. Both gears have
twenty-degree pressure angles and are cut
with a twenty-tooth pinion shaper.

By improving the estimate of the bending
strength of an internal gear tooth, this model
will allow designers to vary the material of a
ring gear from that of its meshing external
gear. Along and short, addendum design
system may also be evaluated to balance
the bending strengths of the external and
intemal gears.
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determination is presented, the iteration to determine the factor is described and the bending strength J factor is compared
to that of an external gear tooth. This strength model will assist optimal design efforts for unequal addendum gears and

gears of mixed materials.
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